

Dr.ing. DEMETER István Dr.ing. NAGY-GYÖRGY Tamás

# AN EXPERIMENTAL PROGRAM OVERVIEW

# RC Wall Panels Strengthened with

# **FRP Composites**

Department of Civil Engineering and Building Services Politehnica University of Timisoara ROMANIA

## CONTENT

# **1. INTRODUCTION**

- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS





1999 Kocaeli, Turkey earthquake (EERI, Earthquake Spectra)

SIGNIFICANT EARTHQUAKES WORLD (last 20 years) Incomplete list

1994 Northridge, USA 1995 Kobe, Japan 1999 Kocaeli, Turkey 2003 Bam, Iran 2008 Wenchuan, China 2009 L'Aquila, Italy 2010 Port au Prince, Haiti 2010 Chile 2011 Christchurch, NZ 2011 Tohoku, Japan

#### **ROMANIA** 1940, 1977, 1986, 1990

Politehnica Timisoara

# Urban habitat

#### **CAPACITY DESIGN RULE**



#### **FLEXURAL FAILURE**

Ductile, large hysteretic loops, significant energy dissipation

#### **SHEAR FAILURE**

Brittle, pinched hysteretic loops, reduced energy dissipation

#### FAILURE MODE CONTROLLED BY

Shear span ratio Shear to flexural strength ratio





#### PRECAST REINFORCED CONCRETE LARGE PANEL (PRCLP) BUILDINGS





-57 000+ buildings
-40 000+ are 5 story PRCLP
-3500+ are 9 story PRCLP
-4500+ are 11 story PRCLP

Data from National Institute of Statistics - Romania (NIS). 2002. http://www.insse.ro.





-Early period in the 1960s

- -Large scale from 1970
- -Era of P+4 PRCLP between 70'-90' (36 000+)
- -Decline from 1990



Nominal room dimensions in horizontal plane



#### **Structural indicators:**

Wall area (I1): 6% Mass / wall area (I2): 0.9 MPa

' Universitatea Politehnica Timişoara

**PRCLP** building



' Universitatea Politehnica Timiseara





RC Large Panel Buildings



#### Reinforcement arrangement



RC Large Panel Buildings

#### Reinforcement arrangement



RC Large Panel Buildings



RC Large Panel Buildings



RC Large Panel Buildings



RC Large Panel Buildings





















INVESTIGATE THE PROBLEM OF CUT-OUT OPENINGS IN PRECAST REINFORCED CONCRETE WALL PANELS SUBJECTED TO SEISMIC LOADING CONDITIONS

AND

PROPOSE STRENGTHENING SOLUTIONS USING FIBER REINFORCED POLYMER COMPOSITES.

- $\rightarrow$  literature survey
- $\rightarrow$  available design guidelines
- $\rightarrow$  theoretical analysis



# **2. EXPERIMENTAL PROGRAMME**

- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS



# **BASIC PRINCIPLE OF THE EXPERIMENTAL TESTING METHODS: REPRODUCE THE** *IN SITU* **CONDITIONS IN THE** *LABORATORY*.



### **BASIC PRINCIPLE OF THE EXPERIMENTAL TESTING METHODS:**

**REPRODUCE,** as much as possible, THE *IN SITU* CONDITIONS IN THE *LABORATORY*.

### **CONSIDERING:**

- $\rightarrow$  AVAILABLE INFRASTRUCTURE AND TESTING FACILITIES.
- $\rightarrow$  FINANCIAL AND HUMAN RESOURCES.

### **DECISION:**

- $\rightarrow$  experimental specimens: INDIVIDUAL WALL PANELS.
- → loading strategy: IN-PLANE, CYCLIC, QUASI-STATIC.

→ test set-up: CAPABLE TO REPRODUCE THE BOUNDARY AND LOADING CONDITIONS.

### **EXPERIMENTAL PROGRAMME**



Universitatea Politebnica 30 Timișpara

#### **ADVANTAGES OF DATABASE**

#### -INCLUDES A LARGE NUMBER OF DATA-LINES -IDENTIFIES SIGNIFICANT PARAMETERS -FACILITATE COMPARISON -IT CAN BE SEARCHED AND/OR SORTED

**Data sources:** ACI Structural Journal, EERI Earthquake Spectra, IAEE Earthquake Engineering & Structural Dynamics, EAEE Bulletin of Earthquake Engineering, ASCE Journal of Structural Engineering, World Conference on Earthquake Engineering series 1 to 14, PCA Research and Development Bulletin, European Conference on Earthquake Engineering series, Engineering Structures

#### **EXISTING RC WALL DATABASES**

Hirosawa (1975) Wood (1990) Panagiotakos and Fardis (2001) Biskinis et al. (2004) Gulec and Whittaker (2009)

#### **REFERENCE LISTS AND CATALOGUES**

Abrams (1991) Farrar et al. (1993)

#### YEAR, TYPE AND REGION



| INCC-1992 | 1992 | Romania | Unit   | civil | wall-frame-slabs | precast    | solid              | non          |
|-----------|------|---------|--------|-------|------------------|------------|--------------------|--------------|
| UPT-1992  | 1992 | Romania |        | civil | wall system      | monolithic | door               | non          |
| INCT-1998 | 1998 | Romania | M; F   | civil | wall system      | precast    | solid              | non          |
| UPT-2005  | 2005 | Romania | SW; RW | civil | wall system      | monolithic | solid; door        | non; FRP-EBR |
| UTCB-2007 | 2007 | Romania | w      | civil | wall system      | monolithic | solid              | non          |
| UPT-2010  | 2010 | Romania | PRCWP  | civil | wall element     | precast    | solid; door cut-ou | non; FRP-EBR |
| UPT-2011  | 2011 | Romania | CSRCW  | civil | wall system      | monolithic | solid              | non; FRP-EBR |

Japan, Canada, New-Zealand Europe: earliest ref. 1984 Construction: Civil or Nuclear Power Plant

- Romania: 7 programs - 4 UPT
  - 1 INCERC-TM

  - 1 UTCB
  - 1 INCERC-CL



WALL TYPES





## Database on experimental programs

#### WALL SCALE AND THICKNESS



#### **ELEMENT CHARACTERISTICS**



Programs that included precast wall panels: 16 (87 specimens)

Programs that included wall with openings: 14 (122 specimens)

**Programs** that included walls strengthened by **CFRP**: 16 (100 specimens)

#### **EXPERIMENTAL PROGRAMS ON FRP STRENGTHENED WALLS**

| ID          |      |             | SPECIMEN             |              |                   |                  |                    |                   |              |
|-------------|------|-------------|----------------------|--------------|-------------------|------------------|--------------------|-------------------|--------------|
| No.         | Year | Country     | Designation          | Construction | Туре              | concrete technol | opening            | strengthening     | No. of spec. |
|             |      |             |                      |              |                   | wall             |                    |                   |              |
| CARLT-2000  | 2000 | Canada      | wall                 | civil        | wall element      | monolithic       | solid              | non; FRP EBR      | 7            |
| EMSI-2000   | 2000 | France-EU   | CAMUS 1to 4          | civil        | wall system       | monolithic       | solid              | non; FRP-EBR      | 4            |
| TOKYU-2000  | 2000 | Japan       | T; U; RC; CF; CFR; . | civil        | column wing-wal   | monolithic       | n/a                | non; FRP-EBR      | 15           |
| TUSJ-2000   | 2000 | Japan       | Specimen             | civil        | wall-frame syster | monolithic       | solid; door; winde | non; FRP-EBR      | 10           |
| ELSA-2001   | 2001 | France-EU   | T                    | nuclear      | wall element      | monolithic       | solid              | non; FRP EBR      | 13           |
| MGILL-2003  | 2003 | Canada      | W                    | civil        | wall system       | monolithic       | solid              | non; FRP-EBR; RC; | 4            |
| AUTH-2003   | 2003 | Greece      | MSW; LSW; FRPM       | civil        | wall element      | monolithic       | solid              | non; FRP EBR      | 11           |
| UUTAH-2003  | 2003 | USA         | Specimen; wall as    | civil        | wall system       | precast          | solid              | FRP-EBR connecti  | 9            |
| MMCAN-2004  | 2004 | Canada      | CW; RW               | civil        | wall element      | monolithic       | solid              | non; FRP-EBR      | 3            |
| HOKU-2004   | 2004 | Japan       | WA                   | civil        | wall-frame syster | monolithic       | door; window       | non; FRP-EBR      | 3            |
| NCREE-2004b | 2004 | Taiwan      | PF; WF               | civil        | wall-frame syster | monolithic       | solid; frame       | non; FRP-EBR      | 6            |
| UFUK-2005   | 2005 | Japan       | W; specimen          | civil        | wall-frame syster | monolithic       | solid              | non; FRP-EBR      | 6            |
| UPT-2005    | 2005 | Romania     | SW; RW               | civil        | wall system       | monolithic       | solid; door        | non; FRP-EBR      | 5            |
| UCNZ-2007   | 2007 | New Zealand | W                    | civil        | wall element      | monolithic       | solid; slitted     | non; selective we | 4            |
| UPT-2010    | 2010 | Romania     | PRCWP                | civil        | wall element      | precast          | solid; door cut-ou | non; FRP-EBR      | 5            |
| NTUSG-2010  | 2010 | Singapore   |                      | civil        | wall element      | monolithic       | a star a           | FRP-EBR           | 4            |
| UPT-2011    | 2011 | Romania     | CSRCW                | civil        | wall system       | monolithic       | solid              | non; FRP-EBR      | 6            |
#### **EXPERIMENTAL STANDS - LOADING DEGREE**

Number and location of the axial and lateral loads



#### **BOUNDARY CONDITIONS**





**BOUNDARY CONDITIONS** 

### Database on experimental programs









#### **BOUNDARY CONDITIONS FOR WALL ELEMENTS**

- Prevails the number of cantilever tests

- Increasing number of restrained rotation tests since 1990



#### **OPENING TYPE:**

DOOR (E), WINDOW (L) AND DOOR-WINDOW (EL).

#### **OPENING SIZE:**

NARROW (1), MODERATE (2) AND WIDE (3).

#### **OPENING NATURE:**

INITIAL, ENLARGED AND CUT-OUT.

WITHOUT OPENING, i.e. SOLID WALL (S).

#### **EXPERIMENTAL PROGRAMME**

# **Opening configuration matrix**





# Experimental elements and variables





#### Line 1 Weakening effect of doorway cut-out

REFERENCE: solid wall VARIABLE: cut-out width





REFERENCE: bare wall with cut-out door

VARIABLE: strengthening condition



Universitatea Politehnica 44 Timişəara

### CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME

# **3. EXPERIMENTAL ELEMENT**

- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS





#### **Concrete outlines**

Web thickness: 100 mmShear keys and threshold to prevent sliding

# **Opening ratio**

- E1 27% (P=0.48)

- E3 64% (P=0.73)

#### **Opening position**

-Eccentric

-Centric

#### Reinforcement

-Single curtain -Web steel ratio:

> 0.42% (h) 0.24%(v)

Politehnica Timisoara



# **EXPERIMENTAL ELEMENT**

# Experimental assembly



### **EXPERIMENTAL ELEMENT**

# Construction phases











Universitatea Politehnica 49 Timişəara









### CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT

# 4. TEST SET-UP

- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS













Set-up type: A



Type A test setup

Loading degree: 4 (2N+2V)

Base and cap beams: heavily reinforced steel-concrete composite

Base beam not fixed, only supported

Specimen-to-base beam anchorage: lap-welding of 4 rebars (ratio 0.17%)













Static scheme



### CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP

# **5. LOADING STRATEGY**

- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS



| QUASI-STATIC | PSEUDO-DYNAMIC | DYNAMIC |
|--------------|----------------|---------|
|--------------|----------------|---------|

| LOADING         | AXIAL                | LATERAL                |
|-----------------|----------------------|------------------------|
| DIRECTION       | IN-PLANE<br>VERTICAL | IN-PLANE<br>HORIZONTAL |
| CHARACTERISTICS | PSEUDO-CONSTANT      | REVERSED CYCLIC        |

The experimental elements will be subjected to in-plane reversed cyclic lateral (horizontal) and pseudo-constant axial (vertical) forces, simulating the seismic loading conditions at a quasi-static rate.







#### **Axial load level**







Principal characteristics: twocomponent featuring a constant level and an alternating part

<u>Constant axial load level</u> Normalised axial load: 6%

Reference strength:  $f_{ck,cyl}$  of the web

Reference cross section: solid wall







# **Axial loading**

<u>Alternating component</u> Control: displacement (uplift) of the cap beam's loaded end

Rate: 100 kN/mm (based primarily on test-setup limitations)

Note that the base beam is not fixed to the laboratory floor





#### **Outrigger effect**

Restrained rotation by additional eccentric axial loading

#### Outrigger canoe source <u>http://www.ballinaoutriggers.com.au</u>





### CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY

# 6. INSTRUMENTATION

- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS



### **INSTRUMENTATION**



### **INSTRUMENTATION**





Universitatea Politebnica 72 Timișoara


























Universitatea Politehnica 80



#### CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION

# **7. DAMAGE ASSESSMENT AND STRENGTHENING**

- 8. EXPERIMENTAL RESULTS
- 9. CONCLUSIONS







Politehnica Timişoara 84





| 4-4-4 | 4-4-1      | 4-1-4 | 4-1-1             | 1-4-4 | 1-4-1            | 1-1-4 | 1-1-1      |
|-------|------------|-------|-------------------|-------|------------------|-------|------------|
| 4-4-3 | 4-4-2      | 4-1-3 | 4-1-2             | 1-4-3 | 1-4-2            | 1-1-3 | 1-1-2      |
| 4-3-4 | 4-3-1      | 4-2-4 | 4-2-1             | 1-3-4 | 1-3-1            | 1-2-4 | 1-2-1      |
| 4-3-3 | 4-3-2      | 4-2-3 | 4-2-2             | 1-3-3 | 1-3-2            | 1-2-3 | z<br>1-2-2 |
| 3-4-4 | 3-4-1      | 3-1-4 | 3-1-1             | 2-4-4 | 2-4-1            | 2-1-4 | 2-1-1      |
| 3-4-3 | 4<br>3-4-2 | 3-1-3 | 3-1-2             | 2-4-3 | 2-4-2            | 2-1-3 | 2-1-2      |
| 3-3-4 | 3-3-1      | 3-2-4 | 3-2-1<br><b>2</b> | 2-3-4 | 2-3-1            | 2-2-4 | 2-2-1      |
| 3-3-3 | 3-3-2      | 3-2-3 | 3-2-2             | 2-3-3 | 2-3-2<br>(2-3-2) | 2-2-3 | 2-2-2      |











Universitatea Politehnica 89 Timişoara











## REPAIR



















#### **CFRP-EBR**

CF-strips of 50/100 mm width

Average CFRP usage (4RT): CF 0.85 Resin 1.2 kg/sqm

Arrangement: FL, SH, CNF

Note inclined diagonal strips at the upper corners

Improvements: end anchorage of SH-strips





#### **Pier-beam connection**

Substrate preparation

Flexural strips

Through-wall anchorages (CFRP tows)

Shear strips

Confinement strips













#### **Base anchorage**

#### Solution 1 Bolted steel angles

Solution 2 CFRP tows

> Universitatea Politehnica 99 Timişoara

# Corner detail





#### Details



## Details







# **Concrete samples**

Three 150 mm cubes from each concrete batch (cylinder and prism samples only from one batch)

Reference strength Web: 17.5 MPa Wing: 39 MPa





# **Steel reinforcement**

OB-type reinforcement Measured yield strength: 410 MPa

<u>PC-type reinforcement</u> Measured yield strength: 450 MPa

<u>STPB-type wires</u> Measured yield strength: 600 MPa

> \* Universitatea Politehnica Timişəara

104



# CFRP-EBR reinforcement

<u>S1-type CF sheet</u> Unidirectional Thickness: 0.122 mm

<u>S2-type CF sheet</u> Unidirectional Thickness: 0.337 mm

| Impregnation resin |
|--------------------|
| Tensile strength:  |
| 30÷45 MPa          |

| <b>Carbon Fibre (CF)</b>        | S1 CF-sheet | S2 CF-sheet |
|---------------------------------|-------------|-------------|
| Tensile strength<br>(MPa)       | 4100        | 3900        |
| Tensile elongation at break (%) | 1.5         | 1.5         |



#### **CFRP-EBR** reinforcement





#### **Qualitative analysis**











R%=0.4

0.4

Load vs. drift ratio

**ENVELOPE** 

1-S-T

Drift ratio (%)

0.6

0.8

#### **Quantitative analysis**




' Universitatea Politehnica Timişoara

109

#### **Quantitative analysis**

# Crack correlation with the strains in reinforcements



















Politebnica 112











# Qualitative analysis









































































# Qualitative analysis







# Qualitative analysis











# CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING

# 8. EXPERIMENTAL RESULTS

9. CONCLUSIONS



- DATA FILES
- ERROR/MISTAKE ANALYSIS
- PRIMARY DIAGRAMS
- ENVELOPE CURVES
- INTEGRATED/DERIVED DIAGRAMS



- INPUT CHANALS:  $18 \div 29$  (D = 10, V/N = 3,  $\varepsilon = 16$ )
- CALCULATION CHANALS : (18÷29)+
- DATA LINES: 6000÷30000 (0.2÷1 LINES/SEC, ~8 HOURS/TEST)
  TOTAL DATA/TEST: 18000 (LINES) X 47 (COLUMS) = 846'000

**TOTAL DATA**: 7 (TESTS) X 846000  $\cong$  **6'000'000** 



- LOAD DISPLACEMENT
  - HORIZONTAL LOAD V (KN) VS HORIZONTAL DRIFT (MM OR %)
  - VERTICAL LOAD N1/2 (KN) VS VERTICAL DISPLACEMENT D8/7 (MM)
  - HORIZONTAL LOAD VS DISPLACEMENT (V-D)
  - VERTICAL LOAD VS DRIFT (N-DRIFT)
- LOAD STRAIN (V-G%)
- LOAD LOAD (N-V)
- STRAIN DISPLACEMENT(G-DRIFT)

DIAGRAMS: 30/TEST, TOTAL: 7X30 = **210** 





-1500 -1250 -1000 -750 -500 -250 0 250 500 750 1000 1250 1500





Politehnica Timişoara 138





Politebnica 140









# **Comparison line**

Weakening effect of doorway cut-out





Strengthening effect of CFRP-EBR (b)

#### • DRAWING PROCESS

- FILTERING TARGET DRIFT LINES (CICLE 1 AND CICLE 2)
- CALCULATION (INTERPRETATION) OF N / D / ε AT THE TARGET DRIFT
- CALCULATION AVERAGES OF C1/2 AND M FOR V/N DRIFT
- DATA
  - ENVELOPE: 7(TAB) x 40(LINE) x 30(COL) = 8 400
  - ENVELOPE AVERAGE (C12/M): 7(TAB) X 22/11(LINE) x 5(COL) = 770/385








#### Load envelopes

Cyclic: C1, C2, C (mean) Monotonic: M, calculated only for lateral load



Displacement envelopes Cyclic: C1, C2

Strain envelopes Cyclic: C1, C2



Politebnica Timişoara 147



Politehnica Timişoara 148



Universitatea Politehnica 149 Timişoara

#### Envelope curves



Vniversitatea Politehnica 150 Timișoara



## Backbone

Tri-linear Point 1 (V1, R1): cracking Point 2 (V2, R2): peak load Point 3 (V3, R3): failure

**Elasto-plastic** Bi-linear Point 1: yield Point 2: ultimate

## Equivalent envelope curves - Monotone



Politehnica Timişoara 152

## Equivalent envelope curves - Monotone



Three curve-clusters according to the cut-out condition

Strength

Stiffness

Drift at peak and failure



#### SHEAR STRENGTH COMPARISON



Effect of cut-out condition

Effect of strengthening condition

Effect of concrete strength



#### LOAD SUSTAINABILITY (OVERSTRENGTH) COMPARISON



Effect of cut-out condition

Effect of strengthening condition

Effect of concrete strength

Universitatea Politehnica Timişəara

155

#### **DRIFT RATIO COMPARISON**



Effect of cut-out condition

Effect of strengthening condition

Effect of concrete strength

Politebnica 156

## Displacement

#### **DISPLACEMENT ENVELOPE COMPARISON**



Shear characteristic horizontal lengthening at the mid-height of the walls.

This type of behaviour is exhibited intensively by the solid wall.

Cut-out condition reduces this effect.



#### DISPLACEMENT DUCTILITY COMPARISON



Effect of cut-out condition

Effect of strengthening condition

Effect of concrete strength

≈ 1.63 ... 1.84

' Universitatea Politehnica Timişəara

158

#### **STIFFNESS DEFINITIONS**





#### **STIFFNESS DEGRADATION**



Comparison of the initial stiffness

Three groups of initial stiffness in accordance to the cut-out condition

Influence of concrete strength (spec No. 4)



#### **STIFFNESS COMPARISON**



#### Effect of cut-out condition

# Effect of strengthening condition



#### **DEFINITION OF ENERGY ABSORPTION**



The area of the hysteresis loops (symbol: A or W, unit: kNm)

Characteristic loading points

Positive and negative halfcycle dissipation

Cumulative drift



#### **CUMULATIVE DISSIPATION CURVE 1**



Continuous cumulative sum of the areas (with sign) below the load-drift curve

Characteristic points

Cyclic energy dissipation

Half-cycle energy dissipation

#### **CUMULATIVE DISSIPATION CURVE 1**





#### **ENERGY DISSIPATION ENVELOPE**





#### **ENERGY DISSIPATION ENVELOPE**





#### **Energy Dissipation Analysis**



Effect of cut-out condition

# Effect of strengthening condition

Volitebnica Timișoara 167

#### **ENERGY DISSIPATION ENVELOPES**



Effect of cut-out condition

Effect of strengthening condition

Energy dissipation rate the ratio of the cumulative energy dissipated and the cumulative displacement (CED/CD, results in force unit)

168

Politehnica Timisoara

#### **DISSIPATION RATIO**



 $\frac{\text{Definition}}{\text{ED/ED}_{\text{max}}}$ 

ED hysteretic energy

ED<sub>max</sub> maximum energy dissipation (area of the peak to peak rectangle)

> ' Universitatea Politehnica Timişəara

169

#### ULTIMATE DISSIPATION RATIO



In this experimental program  $\approx 10\%$ 

Seems to characterizes the boundary conditions (restrained rotation by variable axial loading)

 $\rightarrow$  the cut-outs and the strengthening condition are not affected significantly the dissipation ratio

170

Politehnica Timisoara

## CONTENT

- 1. INTRODUCTION
- 2. EXPERIMENTAL PROGRAMME
- 3. EXPERIMENTAL ELEMENT
- 4. TEST SET-UP
- 5. LOADING STRATEGY
- 6. INSTRUMENTATION
- 7. DAMAGE ASSESSMENT AND STRENGTHENING
- 8. EXPERIMENTAL RESULTS

## 9. CONCLUSIONS



#### CONCLUSIONS

#### SHEAR MECHANISMS



Shear transferred along diagonal load paths: DIAGONAL COMPRESSION *and/or* DIAGONAL TENSION

Proportion between shears carried by the two load paths: stiffness loading conditions boundary conditions



#### SHEAR MECHANISMS





## **Diagonal tension**

## $V_{DT}=nA_s\sigma_s$

Predicted/Measured ratio

at R=0.4% V<sub>P/M</sub>=300/940=0.32

at ultimate V<sub>P/M</sub>=446/1210=0.37

Excessive underestimation



N1

SHEAR MECHANISMS



# Diagonal compression

Ve

Predicted/Measured ratio

at R=0.4% V<sub>P/M</sub>=652/940=0.7

at ultimate V<sub>P/M</sub>=990/1210=0.82

Slight underestimation



## CONCLUSIONS

#### WEAKENING EFFECT OF THE CUT-OUT OPENINGS





 $R_{weak} = R_{solid} \cdot \alpha_p$ 

where the performance ratio and the opening ratio

 $\eta = \begin{cases} P = \sqrt{A_0 / A_w} \\ l_0 / l_w \end{cases}$ 

$$\alpha_p = 1 - \eta$$

Practicing engineers can use the experimental results to evaluate the performance ratios in terms of strength, stiffness and energy dissipation rate.

## CONCLUSIONS

## **CONTRIBUTION OF THE CFRP-EBR STRENGTHENING**



- the shear strength increases in average by 25%
- the peak drift increases by 50%
- the initial stiffness and the energy dissipation rate remain roughly the same
- the cumulative energy dissipation at ultimate increases by  $2 \div 4$  times

#### **CFRP-EBR RETROFIT LIMITATION**

In reversed cyclic applications the flexural CFRP-EBR is susceptible to premature
failure → recommended to use a safety coefficient for flexural FRP ≈ 3
→ further subject-oriented investigations are necessary on this issue.



(2003)

## CONCLUSIONS

#### SHEAR SPAN CONDITIONS



Laboratory investigations on cantilever walls tend to overestimate the shear span conditions relative to the as-built situation.

A reduced shear span condition may change the failure mode from flexural to shear for the same specimen.

Further investigations are necessary on this topic



#### **RESPONSE CHARACTERISTICS**



## Diagonal compression dominated shear response

Reloading stiffness ratio: 0.2÷0.33

Energy dissipation ratio: 10%



## THANK YOU FOR YOUR ATTENTION!



Wall tests videos on:

- -<u>PRCWP 5-S/E3-T</u>
- -<u>PRCWP 3-S/E1-T/R</u>
- -<u>PRCWP 1-S-T</u>
- -<u>PRCWP 3-S/E1-T</u>

© Dr.ing. DEMETER István © Dr.ing. NAGY-GYÖRGY Tamás



